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Abstract
Capture devices rise a large scale trajectory data about mo-
ving object’s movements. These devices use different tech-
nologies like global navigation satellite system (GNSS),
wireless communication, radio-frequency identification
(RFID), and other sensors. Huge trajectory data are avai-
lable. In this article, we are interested in these data, so we
use an ontological data modeling approach to build a trajec-
tory ontology. This ontology contains temporal concepts,
so we map it to a temporal ontology. We present an imple-
mentation framework for declarative and imperative parts
of ontology rules in a semantic data store. An inference
mechanism is computed over these semantic data. The run-
ning time and memory of the inference increases very ra-
pidly as a function of the data size. For this reason, we pro-
pose a two-tier inference filters on data. The primary filter
analyzes the trajectory data considering all the possible do-
main constraints. The data analyzed are considered as the
first knowledge base. These data is passed to the secondary
filter. Then the latter computes the inference over the fil-
tered trajectory data. The secondary filter results yield the
final knowledge base where the user can query.

Keywords
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Résumé
Les dispositifs de capture de trajectoires d’objets en mou-
vement produisent généralement des volumes de données
très important. Ils se développent grâce á différentes tech-
nologies, telles que les systèmes de navigation globale par
satellite (GNSS), les communications sans fil, l’identifica-
tion par radio-fréquence (RFID) et d’autres types de cap-
teurs. Nous nous intéressons dans cet article á ces larges
volumes de données que nous organisons au sein de mo-
dèles ontologiques dans le but de construire une ontolo-
gie des trajectoires. Cette ontologie est interfacée avec une
ontologie temporelle afin de gérer les concepts relatifs au
temps. Nous présentons l’implémentation d’un framework
pour les phases de déclaration et de mise en œuvre des

règles au sein d’une base de données sémantiques. Un mé-
canisme d’inférence est lancé sur ces données sémantiques.
Son temps d’exécution ainsi que sa charge en mémoire
augmentent rapidement en fonction du volume de données.
Afin de limiter ce problème, nous proposons un double
filtre d’inférence sur les données. Le premier filtre ana-
lyse les données de trajectoire en prenant en compte toutes
les contraintes de domaine possibles. Les données de sor-
tie forment alors la première base de connaissances et sont
transférées au deuxième filtre. Celui-ci effectue l’inférence
sur ces données filtrées. Les données en sortie de ce second
filtre forment la base de connaissances finales que l’utilisa-
teur va pouvoir interroger.

Mots Clef
Modélisation de trajectoire, Règles temporelles, Inférence,
filtrage de données.

1 Introduction
Advances in information and communication technologies
have encouraged collecting spatial, temporal and spatio-
temporal data of moving objects [5]. The raw data captu-
red, commonly called trajectories, traces moving objects
from a departure point to a destination point as sequences
of data (sample points captured, time of the capture). Raw
trajectories don’t contain goals of traveling nor activities
accomplished by the moving object. Large datasets need to
be analyzed and modeled to tackle the user’s requirements.
To answer these queries we need also to take into account
the domain knowledge.
This paper deals with marine mammals tracking applica-
tions, namely seal trajectories. Trajectory data are captured
by sensors included in a tag glued to the fur of the animal
behind the head. The captured trajectories consist of spa-
tial, temporal and spatio-temporal data. Trajectories data
can also contain some meta-data. These datasets are orga-
nized into sequences. Every sequence, mapped to a tempo-
ral interval, characterizes a defined state of the animal. In
our application, we consider three main states of the seal :
haulout, dive and cruise. Every state is related to seal’s ac-
tivity. For example, a foraging activity occurs during dives.



Our goal is to enrich trajectory data with semantics to ex-
tract more knowledge. In our previous work [15], we ta-
ckled trajectory data connected to other temporal and spa-
tial source of information. We directly computed the infe-
rence over these data. The experimental results addressed
the running time and memory problems over the ontology
inference computation. Furthermore, we try to solve these
problems by defining some domain constraints, time res-
trictions [9] and inference refinements [14]. The proposed
refinements enhanced the inference computation, however,
they do not definitely solve the inference problems.
In the present work, we introduce a two-tier inference fil-
ters on trajectory data. In other words, two distinct opera-
tions are performed to enhance the inference : primary and
secondary filter operations. The primary filter applies all
the possible domain constraints over the captured data. So,
the primary filter permits fast selection of the analyzed data
to pass along to the secondary filter. The latter computes
the inference over the data output of the primary filter. The
global view of this work is detailed as the following steps :
– Semantic trajectory data is an RDF dataset based on the

ontology trajectory ;
– For analyzing data, filtering or indexing could be ap-

plied. In our case, we carry out a place-of-interest pro-
cess to analyze data. The analyzed data are stored in a
knowledge repository ;

– Secondary filter computes inferences over the data with
the consideration of the domain knowledge ;

– Semantic trajectory data and the new data inferred are
stored in the knowledge repository ;

This paper is organized as follows. Section 2 illustrates
an overview of the ontological modeling approach used.
This trajectory ontology contains temporal concepts, so
Section 3 presents W3C OWL-Time ontology [7] which
is mapped to our ontology. Section 4 details the implemen-
tation of the trajectory ontology, the domain ontology rules
and the temporal rules. Section 5 addresses the complexity
of the ontology inference over domain and temporal rules.
Section 6 introduces the primary filter over trajectory data
based on place-of-interest process. Section 7 evaluates the
ontology inference over the filtered data. Section 8 summa-
rizes recent work related to trajectory data modeling using
ontology approach and some introduced solutions to tackle
the problem of the inference complexity using data filte-
ring. Finally, Section 9 concludes this paper.

2 Trajectory ontology modeling
2.1 Trajectory domain ontology
This paper considers trajectories of seals. The data comes
from the LIENSs 1 (CNRS/University of La Rochelle) in
collaboration with SMRU 2. These laboratories work on
marine mammals’ ecology. Trajectory data of seals bet-
ween their haulout sites along the coasts of the English

1. http ://lienss.univ-larochelle.fr
2. SMRU : Sea Mammal Research Unit- http ://www.smru.st-

and.ac.uk

Channel or in the Celtic and Irish seas are captured using
GNSS systems. From the analysis of captured data, we de-
fine a seal trajectory ontology that we connect to the tra-
jectory domain ontology. The trajectory domain ontology
is our model used in many moving object applications.
Details of the modeling approach is discussed in [11]. Fi-
gure 1 shows an extract of the seal trajectory ontology, cal-
led owlSealTrajectory. Table 1 gives a dictionary of its
concepts.
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FIGURE 1 – Overview of the seal trajectory ontology

2.2 Seal trajectory ontology
In this work, we propose a Semantic Domain Ontology (Fi-
gure 2) based on activities organized as general ones linked
to trajectory, and a hierarchy of basic activities linked to
sequences of the trajectory domain ontology. The Seal Do-
main Ontology (Figure 2) considers seal’s activities. Ac-
cording to the domain expert, the seal trajectory ontology
sequences are associated with four main activities : resting,
traveling, foraging and traveling-foraging.

3 Time ontology
Seal trajectory ontology includes concepts that can
be considered as temporal. For example, the concept
Sequence is a temporal interval. To integrate tempo-
ral concepts and relationships in seal trajectory onto-
logy, we choose a mapping approach between our on-
tology and the OWL-Time 3 ontology [7] developed by
the World Wide Web Consortium (W3C). This mapping
is detailed in our previous work [15]. An extract of the
declarative part of this ontology is shown in figure 3
described in detail in [7]. We are mainly interested in
the ProperInterval concept and its two properties
hasBeginning and hasEnd.

3. http://www.w3.org/2006/time

http://www.w3.org/2006/time


TABLE 1 – Seal trajectory ontology dictionary

This paper is organized as follows. Section 2 illustrates an
overview of the ontological modeling approach used. This
trajectory ontology contains temporal concepts, so Sec-
tion 3 presents W3C OWL-Time ontology [10] which is
mapped to our ontology. Section 4 details the implementa-
tion of the trajectory ontology, the domain ontology rules
and the temporal rules. Section 5 addresses the complexity
of the ontology inference over domain and temporal rules.
Section 6 introduces the primary filter over trajectory data
based on place-of-interest process. Section 7 evaluates the
ontology inference over the filtered data. Section 8 summa-
rizes recent work related to trajectory data modeling using
ontology approach and some introduced solutions to tackle
the problem of the inference complexity using data filter-
ing. Finally, Section 9 concludes this paper and presents
some future prospects.

2 Semantic trajectory ontology
2.1 Trajectory ontology modeling
This paper considers trajectories of seals. The data comes
from the LIENSs1 (CNRS/University of La Rochelle) in
collaboration with SMRU2. These laboratories work on
marine mammals’ ecology. Trajectory data of seals be-
tween their haulout sites along the coasts of the English
Channel or in the Celtic and Irish seas are captured using
GNSS systems.
From the analysis of captured data, we define a seal tra-
jectory ontology that we connect to the trajectory do-
main ontology. The trajectory domain ontology is our
model used in many moving object applications. Details
of the modeling approach is discussed in [14]. Figure 1
shows an extract of the seal trajectory ontology, called
owlSealTrajectory. Table 1 gives a dictionary of its
concepts.
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1http://lienss.univ-larochelle.fr
2SMRU: Sea Mammal Research Unit- http://www.smru.st-and.ac.uk

2.2 Seal trajectory ontology
In this work, we propose a Semantic Domain Ontology
(Figure 2) based on activities organized as general ones
linked to trajectory, and a hierarchy of basic activities
linked to sequences of the trajectory domain ontology. The
Seal Domain Ontology (Figure 2) considers seal’s activi-
ties. According to the domain expert, the seal trajectory
ontology sequences are associated with four main activi-
ties: resting, traveling, foraging and traveling-foraging.

Table 1: Dictionary classes of the seal trajectory ontology

Trajectory domain ontology
Concept Description
Trajectory logical form to represent sets of sequences
Sequence spatio-temporal interval representing a

capture
GeoSequence spatial part of sequence
Specific Se-
quence

metadata associated of a capture

startPosition,
endPosition

object properties to represent the end and
the beginning of a sequence

Seal domain ontology
Concept Description
haulout a state seal where it is not in the water and

wet for 40 seconds
cruise a state seal where it is in the water and shal-

lower than 1.5 meter
dive a state seal where it is in the water and

deeper than 1.5 m for 8 seconds
CTD Conductivity-Temperature-Depth: meta-

data about marine environment
Summary metadata about deployment’s conditions of

the sensor
dive_dur,
sur_dur,
max_depth

data properties: dive duration, surface du-
ration and maximum depth of a dive

TAD Time Allocation at Depth: data properties
to define the shape of a seal’s dive [7].
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4 Ontology rules
4.1 Seal trajectory ontology rules
Seal trajectory ontology (Figure 2) considers seal’s activi-
ties. Each seal activity has both a declarative part and an
imperative corresponding part. The imperative parts of ac-
tivities are defined as rules in the ontology. A rule is an
object that can be used by an inference process to query
semantic data.
Oracle Semantic Technologies is a rule-based sys-
tem where rules are based on IF-THEN pattern
and new assertions are placed into working memory.
Thus, the rule-based system is said to be a deduc-
tion system. In deduction systems, the convention is
to refer to each IF pattern an antecedent and to
each THEN pattern a consequent. User-defined rules
are defined using SEM_APIS.CREATE_RULEBASE
procedure in a rulebase. Our rulebase is called
sealActivities_rb. The system automatically asso-
ciates a view called MDSYS.SEMR_rulebase-name to
insert, delete or modify rules in a rulebase. Code 1 gives
the foraging_rule definition based on the domain ex-
pert’s conditions. From line 4 to 10 of Code 1, we construct
a subgraph and necessary variables needed by the IF part
of foraging_rule. Line 11 gives the THEN part of the
rule. Line 12 defines the namespace of ontology.

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’sealActivities_rb’);
2 INSERT INTO mdsys.semr_sealActivities_rb
3 VALUES( ’foraging_rule’,
4 ’(?diveObject rdf:type s:Dive )
5 (?diveObject s:max_depth ?maxDepth )
6 (?diveObject s:tad ?diveTAD )
7 (?diveObject s:dive_dur ?diveDur )
8 (?diveObject s:surf_dur ?surfaceDur )
9 (?diveObject s:seqHasActivity ?activityProberty )’,

10 ’(maxDepth > 3) and (diveTAD > 0.9) and
(surfaceDur/diveDur < 0.5)’,

11 ’(?activityProberty rdf:type s:Foraging )’,
12 SEM_ALIASES(SEM_ALIAS(’s’,’owlSealTrajectory#’)));

Code 1 – Implementation of foraging rule

4.2 Time ontology rules
The OWL-Time ontology declares the 13 temporal in-
terval relationships based on Allen algebra [1]. We im-
plement the rule base owlTime_rb to hold the inter-
val temporal relationships. For example, the code 2 pre-
sents the implementation of the imperative part of the
intervalAfter_rule based on operations defined in
the table TM_RelativePosition of the ISO/TC 211
specification about temporal schema [6]. In code 2, the line
10 expresses the condition that the beginning of the refe-
rence interval is bigger than the end of the argument inter-
val. Line 11 is the consequent of rule.

5 Trajectory ontology inference
Inferencing is the ability to make logical deductions based
on rules defined in the ontology. Inferencing involves the
use of rules, either supplied by the reasoner or defined by
the user. At data level, inference is a process of discovering



new relationships, in our case, new triples. Inferencing, or
computing entailment, is a major contribution of semantic
technologies that differentiates them from other technolo-
gies.

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’owlTime_rb’)
2 INSERT INTO mdsys.semr_owltime_rb
3 VALUES(’intervalAfter_rule’,
4 ’(?tObj1 rdf:type ot:ProperInterval )
5 (?tObj2 rdf:type owltime:ProperInterval )
6 (?tObj1 ot:hasEnd ?end1 )
7 (?end1 :inXSDDateTime ?endTime1 )
8 (?tObj2 ot:hasBeginning ?begin2 )
9 (?begin2 ot:inXSDDateTime ?beginTime2 )’,

10 ’(beginTime2 > endTime1 )’,
11 ’(?tObj2 owltime:intervalAfter ?tObj1 )’,
12 SEM_ALIASES(SEM_ALIAS(’ot’,’http://www.w3.org/2006/

time#’)));

Code 2 – Implementation of intervalAfter rule

In Oracle Semantic Technologies, an entailment contains
precomputed data inferred from applying a specified set
of rulebases to a specified set of semantic models. Code 3
creates an entailment over the seal trajectory and time mo-
dels. This entailment uses a subset of OWL rules called
OWLPrime [12], the seal trajectory and time ontologies
rules. Other options are also required like number of rounds
that the inference engine should run. In case of applying
user-defined rules USER_RULES=T, the number of rounds
should be assigned as default to REACH_CLOSURE.
In our experiment, we measure the time needed to com-
pute the entailment (Code 3) for different sets of real tra-
jectory data for one seal. Its movements are captured from
16 June until 18 July 2011 and we have got 10 000 captured
data. In this experiment, the seal activity rulebase contains
only the foraging rule. So, the input data for the entailment
are only dives. Figure 4 shows experiment results for the
computation time in seconds needed by the entailment. For
example, for 450 dives, the inference takes around 60 000
seconds (' 16.6 hours).

1 SEM_APIS.CREATE_ENTAILMENT(’owlSealTrajectory_idx’,
2 SEM_MODELS(’owlSealTrajectory’,’owlTime’),
3 SEM_RULEBASES(’OWLPrime’,’sealActivities_rb’, ’

owlTime_rb’),
4 SEM_APIS.REACH_CLOSURE, NULL, ’USER_RULES=T’);

Code 3 – Entailment over owlSealTrajectory and
owlTime ontologies

6 Place Of Interest over trajectory
data

Our proposal is to analyze the captured data before com-
puting the ontology inference. This analyzing is achie-
ved by our primary filter. This filter considers trajectories
which are segmented by the object positions. These posi-
tions changes and stays fixed. Spaccapietra [13] named the
former moves and the latter stops. For this reason, a tra-
jectory is seen as a sequence of moves going from one stop
to the next one.

Definition 1 (Stop) A stop is a part of a trajectory having
a time interval and represented as a single point.
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Definition 2 (Move) A move is a part of a trajectory re-
presented as a spatio-temporal line.

The primary filter defines interesting places for a moving
object. The interesting places are related to where the mo-
ving object stays more and visits more. This filter is explai-
ned in Algorithm 1. This algorithm takes the two parts of
a trajectory (move and stop) data as input and gives as out-
put interesting places. The following definitions are used
by the algorithm :

Definition 3 (Neighbors) Neighbors for a point (pi) are
a list of points from the Move data where the dis-
tance between pi and any neighbor point is smaller
than a fixed radius. Neighbor(pi) = {(p j)

n
j=1 : pi, p j ∈

Move, distance(pi, p j)< radius}.

Definition 4 (Peak) A peaki is a cardinality of the list
Neighbor(pi). (peaksi)

n
i=1 = #(Neighbor(pi))

n
i=1.

Definition 5 (Points_Neighbors) Points_Neighbors are a
list of points and their neighbors. Points_Neighbors =
{(pi,Neighborsi)

n
i=1 : pi,Neighborsi ∈ Move}.

Definition 6 (Places) Placei is an interesting place which
contains the Neighbor(pi) and number of its visits (nVisits)
by the moving object. Places = {(Neighborsi,nVisitsi)

n
i=1 :

Neighborsi ∈ Move, nVisitsi ∈ number}.

The first step of the primary filter, Algorithm 1 lines 5-
9, gathers the move data into groups of neighbors. These
groups are defined with respect to a radius. This ra-
dius is a fixed distance between two points to calcu-
late the neighbors. The candidate of the radius is rela-
ted to the application view of a trajectory, and it is ta-
ken as input for this algorithm. The output of the first
step is Points_Neighbors. The second step of this filter,
lines 10-16, defines the interesting places starting from the
Points_Neighbors. In general, we could take all the mem-
bers of the Points_Neighbors or we could apply a condi-
tion over the (Peak). For example, the application view
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could be interesting in places which having 60 points and
over, or could be interesting in any place having at least
a point. For defining places, the coordinate of the group
neighbors could be an interesting place with two condition.
Every point belongs to a place should be far from the stop
data more than the fixed radius. Any place should not have
any neighbor place within the radius distance, otherwise
we merge the two coordinates and increase the visits num-
ber. The result of this step (Places) is the output of this
algorithm.
To analyze our data, we consider the same datasets in
Sect. 5. We pass these data to the Place Of Interest algo-
rithm. This algorithm analyzes the data and gives as output
the places and their visits, as shown in Fig 5 interesting
places (1). Finally, the results of the primary filter are de-
creased the captured data from 10 000 into 6 170 interes-
ting raw trajectories.

Algorithm 1: The Place Of Interest algorithm

7 Experimental results
We analyze the trajectory data and define the interesting
places. However, the main goal is to define foraging places
among these them. This is the goal of the secondary fil-
ter. The secondary filter computes the entailment over the
interesting places. This filter specifies foraging places and
determines the number of foraging activity for each place,
as shown in Figure 5 foraging places (2). We can notice that
the places 1, 4, 5, 7 and 11 are not considered as foraging
places. Places 2, 6 , 9 and 10 are the significant foraging
places.
By the normal inference ontology computation results, we
could not be able to consider all the captured data. Actually,
we compute the inference just for 500 raw data. However,
using the primary filter and defining the interesting places
help us to define foraging places over all the captured data.
These inferred data are considered as the final knowledge
data where the user can query.

8 Related work
Data management techniques including modelling, in-
dexing, inferencing and querying large data have been ac-
tively investigated during the last decade [16, 10, 8]. Most
of these techniques are only interested in representing and
querying moving object raw trajectories [17, 15, 3]. A
conceptual view on trajectories is proposed by Spaccapie-
tra et al. [13] in which trajectories are a set of stops, moves.
Each part contains a set of semantic data. Based on this
conceptual model, several studies have been proposed such
as [2, 17]. Alvares et al. [2] proposed a trajectory data pre-
processing method to integrate trajectories with the spatial.
Their application concerned daily trips of employees from
home to work and back. However, the scope of their paper
is limited to the formal definition of semantic trajectories
with the space and time without any implementation and
evaluation. Yan et al. [17] proposed a trajectory computing
platform which exploits spatio-semantic trajectory model.
One of the layers of this platform is data preprocessing
layer which cleanses the raw GPS feed, in terms of preli-
minary tasks such as outliers removal and regression-based
smoothing. Based on a space-time ontology and events ap-
proach, Boulmakoul et al. [4] proposed a generic meta-
model for trajectories to allow independent applications
processing trajectories data benefit from a high level of in-
teroperability, information sharing. Their approach is ins-
pired by ontologies, however the proposed resulting system
is pure database approach. Boulmakoul et al. have elabora-
ted a meta-model to represent moving objects using a map-
ping ontology for locations. Actually, in extracting infor-
mation from the instantiated model during the evaluation
phase, they seem rely on a pure SQL-based approach not
on semantic queries. Related to all those limitations in the
state of the art, we define and implement two tier filters
over trajectory data to clean and analyze the data and solve
the computation problem.



9 Conclusion and future work
In this work, we propose a modeling approach based on on-
tologies to build a trajectory ontology. Our approach consi-
ders three separated ontology models : a general trajectory
domain model, a domain knowledge or semantic model and
a temporal domain model. We map the spatial concepts in
the trajectory ontology to the spatial ontology. To imple-
ment the declarative and imperative parts of the ontologies,
we consider the framework of Oracle Semantic Data Store.
To define the thematic and temporal reasoning, we imple-
ment rules related to the considered models. Thematic rules
are based on domain trajectory activities and the temporal
rules are based on Allen relationships. Then, we consider
two-tier inference filters. In other words, two distinct ope-
rations are performed to enhance the inference : primary
and secondary filter operations. The primary filter analyzes
the trajectory data into places of interest. The secondary
filter computes the ontology inference over the semantic
trajectories using the ontology domain and temporal rules.
The experimental results shows that we are able with the
two- tier filters to answer user query over all the captured
data, whereas we could not without it even compute the
ontology inference.
For the evaluation, we use a PC with Linux system over a
processor i5-250M, 2.5GHz and 8G memory. For the fu-
ture work, we look for a server PowerVault NX400 with
processor E5-2420 at 1.90GHz 6 cores and 16Gb ram with
4 drives TB.
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